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Existing techniques to identify moving forces exhibit the common weakness of having
large #uctuations in the identi"ed results. A new method of moving force identi"cation is
developed in this paper making use of the dynamic programming technique to overcome this
weakness. The forces in the state-space formulation of the dynamic system are identi"ed in
the time domain using a recursive formula based on several distributed sensor
measurements, and responses of the structure are reconstructed using the identi"ed forces
for comparison. Like all inverse problems, the computation is ill-conditioned. However, the
dynamic programming technique inherently provides bounds to the ill-conditioned forces,
and results from the simulation studies and laboratory work show great improvements over
existing methods in the accuracy of identi"cation.
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1. INTRODUCTION

The vehicle/bridge interaction forces are important for bridge design as they contribute to
the live load component in the bridge design code. Direct measurement of the forces using
instrumented vehicles is expensive and is subjected to bias [1, 2], while results from
computation simulations are subjected to modelling errors [3}5]. Inclusion of the
in#uencing parameters in the model would make it computationally expensive. Systems
have been developed for weigh-in-motion of the vehicles [6, 7], but they all measure only
the static axle loads. A technique to determine the vehicular loads from the vibration
responses of the bridge deck is required such that the di!erent parameters of the bridge and
vehicle system are accounted for in the measured responses, and the cost involved would be
much less than that by direct measurement.

Some researchers identi"ed forces acting at a "xed location. Whiston [8] and Jordan and
Whiston [9] used the arrival-time di!erence between the maximum and minimum
frequency components in the #exural wave in a beam to calculate a preliminary estimation
of the force, and a further re"nement process is conducted to reconstruct the impact history
iteratively so that the force would not have a negative value. Michaels and Pao [10]
developed a method that determined an oblique dynamic force using wave motion
displacement measurements.
0022-460X/01/020233#22 $35.00/0 ( 2001 Academic Press
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Other researchers worked on the problem in which both the force history and its location
and unknown. Examples include using the modal response data to determine the location of
impact forces on the read/write head of computer disks [11]. Doyle [12] also developed
a method for determining the location and magnitude of an impact force using the phase
di!erence of the signals measured at two di!erent locations straddling the impact point.
Flexural wave propagation response was used to determine the location of the structural
impacts.

All the above works are based on the propagating-wave approach which relies on models
in the frequency domain. Busby and Trujillo [13] reconstructed the force history using
a standing wave approach and Hollandsworth and Busby [14] veri"ed this experimentally
with a force applied at a known location and accelerometers were used as sensors. Simonian
[15, 16] used a dynamic programming "lter to predict wind loads on a structure. Druz et al.
[17] formulated a non-linear inverse problem and tried to "nd the location and magnitude
of the external force. This force, however, was not general and is con"ned to a sinusoidal
function de"ned by its amplitude and phase.

Research on the identi"cation of moving forces just started a few years ago. The time
domain approach [18] models the structure and forces with a set of second order
di!erential equations. The forces are modelled as step functions in a small time interval.
These equations of motion are then expressed in the modal co-ordinates, and they are
solved by convolution in time domain. The forces are then identi"ed using the modal
superposition principle. The frequency and time domain approach [19] performs Fourier
transformation on the equations of motion, which are expressed in modal co-ordinates. The
Fourier transforms of the responses are expressed in terms of those for the forces, and the
time histories of the forces are found directly by the least-squares method. The modal
approach [20] identi"es the forces completely in the modal co-ordinates. Measured
displacements are converted into modal displacements with an assumed shape function.
The modal velocities and accelerations are then obtained by di!erentiation. The forces are
then identi"ed by solving the uncoupled equations of motion in modal co-ordinates.

All the three approaches require the computation of matrix inverse, and they are
computationally expensive. These approaches can be shown to be numerically
ill-conditioned at the start and end of the time histories.

This paper further explores the area of moving force identi"cation making use of the
dynamic programming technique. The forces are identi"ed in the time domain using
recursive formula, and responses of the structure are reconstructed using the identi"ed
forces for comparison. The forces are identi"ed based on several distributed sensor
measurements. Like all inverse problems, the computation is ill-conditioned. However,
the dynamic programming technique inherently provides bounds to the ill-conditioned
forces, and results from both the simulation studies and laboratory work show great
improvements in the accuracy of identi"cation over existing methods. The simulation
studies are on the identi"cation of a single force and two forces moving on a simply
supported beam. The experiment study has a model car moving on a simply supported
beam, and the interaction forces are identi"ed from velocity and bending moment responses
of the beam.

2. ASSUMPTIONS

The following assumptions are made on the dynamic system model:

1. The changes in the system characteristics, i.e., the sti!ness, damping and mass matrices
under the passage of the force are negligible.
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2. Structural damping is included in the analysis.
3. The structure may not be at rest before the application of the load.
4. There is no restriction on the type of force history to be identi"ed.
5. The Euler}Bernoulli beam model is used with the shear e!ect neglected.

3. NODAL FORCES FROM AN APPLIED FORCE

When a force time history f
1

is applied on a two-dimensional "nite beam element of
length l between the ith and (i#1)th nodes at a point distance x from the left end, the nodal
forces at each end of the beam element can be represented by
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where R
i
, R

i`1
are the vertical nodal forces, and M

i
, M

i`1
are the nodal bending moments

at the ith and (i#1)th node of the structure respectively. These nodal forces are grouped
into the global force vector as

P"Y(x) ) f
1
, (2)

where P is the nodal force vector and Y(x) is the vector on the location of the applied force.
For the case of multi-forces acting on the beam element, the global force vector arising from
the ith force is represented by

P
i
"Y(x

i
) ) f

i
. (3)

4. STATE-SPACE MODEL FORMULATION

The "nite element representation of an n-d.o.f.s dynamic system is given by

MuK#Cu#Ku"P, (4)

where u is a vector containing all the displacements of the model, uR is the "rst derivative of
u with respect to time t, M is the system mass matrix, C is the system damping matrix, K is
the system sti!ness matrix, and P represents the system of exciting forces which is a function
of the location and magnitude of the applied forces as shown in equation (3).

Using the state-space formulation, equation (4) is converted into a set of "rst order
di!erential equations as follows:

X0 "K*X#P1 , (5)
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where
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where X represents a vector of state variables of length 2n containing the displacements and
velocities of the nodes, n

f
is the number of forces, and f is a vector of length n

f
representing

the unknown applied forces. These di!erential equations are then rewritten as discrete
equations using the standard exponential matrix representation.

X
j`1

"FX
j
#G1

j`1
P1
j
, (7)

F"eK*h (8)

and

G1 "K*~1(F!I), (9)

where matrix F is the exponential matrix, and together with matrix G1 it represents the
dynamics of the system, ( j#1) denotes the value at the ( j#1)th time step of computation,
the time step h represents the time di!erence between the variable states X

j
and X

j`1
in the

computation, and G1 is a matrix relating the forces to the system. Substituting equations (6)
and (9) into equation (7) we have

X
j`1

"FX
j
#G

j`1
f
j
, (10)

where

G"G1 2n]2n C
0

!M~lYD2n]nf

. (11)

5. PROBLEM STATEMENT

The problem we have is one in which the system matrices K, C and M are known together
with information on some of the displacements and velocities. However, the forcing term f is
unknown. The goal of this problem is to "nd the forcing term f that causes the system
described in equation (10) to best match the measurement.

In practice, it is not possible to measure all the displacements and velocities, and, only
certain combinations of the variables X

j
are measured. The measurement equation is given

as

d
j
"QX

j
, (12)

where d
j
is an (m]1) measurement vector, Q is an (m]2n) selection matrix relating the

measurements to the state variables, and X
j

is of dimension (2n]1). The actual
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measurements are represented by a vector Z
j
which is of the same dimension as d

j
. The

number of measured variables m is usually much less than the number of state variables (or
n d.o.f.s of the system) but greater than or equal to n

f
, the length of vector f. In the case of

a two-dimensional simply supported beam divided into ¸ elements, n"2(¸#1)!2
including all vertical displacements and rotational displacements at each of its nodes.

When the unknown force f
j
is included in equation (10), an exact match of the model with

the measured data is usually not possible. This is due to the fact that all measurements have
some degree of noise. Even the least-squares criterion is not su$cient because
a mathematical solution that will minimize the least-squares error E represented by
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will usually end up with the model exactly matching the data. (x, y) in equation (13) denotes
the inner product of two vectors x and y. This situation could be avoided by adding
a smoothing term to the least-squares error [21, 22] to become a non-linear least-squares
problem
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The second term is known as the regularization parameter and the method is called the
Tikhonov [23] method. Matrices A(m]m) and B (n

f
]n

f
) are symmetric positive-de"nite

weighting matrices that provide the #exibility of weighting the measurements and the
forcing terms. Matrix A is usually an identity matrix and matrix B is a diagonal matrix. The
second term with the positive parameter B has the e!ect of smoothing the identi"ed forces.
A small value of B causes the solution to match the data closely but produces large
oscillatory deviations. A large value of B produces smooth forces that may not match the
data well. When B is zero, the solution becomes that for the least-squares problem.

6. STRAIN MEASUREMENTS

For a two-dimensional "nite beam element of length l represented by the degrees of
freedom (u

1
, h

1
, u

2
, h

2
) at its two ends, the strain at any cross-section distance x from the left

end of the beam element can be given in terms of the d.o.f.s. at its two ends as
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where y represents the distance from the neutral axis of the beam. In the veri"cation of this
study, the strain measurements and hence the bending moments are related to all of the
transverse displacements and rotational displacements at the ends of the element using this
relationship.

7. MATRIX G FOR TWO MOVING FORCES WITH KNOWN SPEED

Suppose that we have two forces spaced at a constant distance moving across a simply
supported beam at a constant speed c. The matrices G1 and G in equations (9) and (11),
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respectively, vary for di!erent locations of the forces. Rewrite equations (2) and (9) as
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The discrete representation of the system in equation (7) can then be written as
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and in matrix form as
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where G
j`1

is the value at the ( j#1)th time step. Note the equation (20) is the same as
equation (10) but for two moving forces.

8. DYNAMIC PROGRAMMING

To minimize the least-squares error E in equation (14) over the sequence of the forcing
vector f

j
, the dynamic programming method [24] and Bellman's Principle of Optimality

[25] are applied. The minimum value of E at the nth stage for any initial state X is written as

g
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A recursive formula for equation (21) is derived from Bellman's Principle of Optimality as
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This equation represents the classic dynamic programming structure in that the minimum
at any point is determined by selecting the decision f

n~1
to minimize the immediate cost (the

"rst and second terms) and the remaining cost resulting from the decision (the third term). It
is noted that the minimization is performed over a previously determined function g

n
. The
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terms f
n

and g
n

are the optimal forcing term and the optimal cost term respectively. The
solution is obtained by starting at the end of the process, n"N, and working backward to
n"1. At the endpoint, the minimum is determined from
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With f
N
"0, we obtain the minimum solution as shown in equation (24) by expanding

equation (23)
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These are the initial conditions for working backward at n"N. Substituting equation (24)
for the nth and (n!1)th steps into equation (22), and expanding the right-hand side of the
equation, we have
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Minimizing the term on the right-hand side of equation (26) yields the optimal forcing term
as
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Equating like powers of X in equation (28) will yield the following relationship:
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These are the recursive formulae required to determine the optimal solution of equation
(22). The complete sequence of operations is as follows:

Step 1: Matrices Q and Z and the speed of the forces are obtained from measurement;
Step 2: Matrix G1 and hence matrix G are obtained from information on the location of the

forces from equations (9) and (19);
Step 3: Compute the initial values q

N
, R

N
and S

N
from equation (25); compute H

N
from

equation (26);
Step 4: Compute S

n~1
and R

n~1
from equation (29) for n"N to 1;

Step 5: Initial condition of X is set as zero and compute the responses X
j`1

from equation
(20) for j"0 to N, and compute the forces f

n~1
from equation (27) for n"1 to N;

Step 6: Steps 1}5 are repeated for a di!erent smoothing parameter B. Convergence is
reached when the error computed from equation (30) is reduced to a predetermined
value.

9. SIMULATION AND RESULTS

The proposed method is studied for its accuracy and e!ectiveness in identifying the
following simulated forces

(a) for single moving force identi"cation

f
1
(t)"40 000 [1#0)1 sin (10nt)#0)05 sin (40nt)]N;

(b) for two moving forces identi"cation

f
1
(t)"20 000 [1#0)1 sin (10nt)#0)05 sin (40nt)]N,

f
2
(t)"20 000 [1!0)1 sin (10nt)#0)05 sin (50nt)]N.

The two forces are at a constant spacing of 4 m apart and they are moving together on
a simply supported beam at a velocity of 40 m/s. The physical parameters of the beam are:

EI"1)274916 * 1011Nm2, oA"12 000 kg/m, ¸"40 m.

The lowest three natural frequencies of the beam are 3)2, 12)8 and 28)8 Hz. The "nite
element model of the beam consists of 10 elements with 11 nodes and 20 rotational and
translational d.o.f.s. The state variable matrix X has a dimension of (40]1). A sampling
frequency of 200 Hz is used indicating that 100 Hz is the upper frequency limit of the study.
The time when there are forces on the beam is 1)1 s, and 220 data points are used.

Dynamic analysis was performed on this system to "nd the velocity and bending moment
time histories at speci"ed locations. Five per cent root-mean-square normally distributed
random noise with zero mean and unit standard deviation was added to these responses to
simulate the polluted measurements.

The error in the force identi"cation is calculated by the following equation where EfE is
the norm of a matrix:

Error"
Ef

identified
!f

true
E

Ef
true

E
]100%. (30)

Since the true force is known, the optimal regularization parameter B is obtained by
comparing the true force f

true
with the identi"ed values f

identified
, and an error curve can be



TABLE 1

Error in one force identi,cation (in per cent) (with 5% noise in response)

Sensor location and
response type Moment Velocity Both

1/2 span 26)8 24)5 26)9
1/4 span 26)1 21)7 26)0
1/2 span, 1/4 span 26)7 19)8 26)6
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plotted for di!erent values of B. The error is calculated from equation (30). It is noted that
the optimal value of B corresponds to the smallest error.

If both the measured bending moments and velocities are used together to identify the
moving forces, the velocity component and the bending moment component in the vector
X in equation (10) should be scaled by their respective norms to have dimensionless units.

9.1. SINGLE-FORCE IDENTIFICATION

Nine combinations of the responses at 1/4 and 1/2 span as shown in Table 1 are used in
the identi"cation. The errors in Table 1 show that the use of single or multiple responses
does not cause signi"cant di!erence in the errors of identi"cation. Results not shown here
indicate that the use of an additional sensor at 3/4 span does not improve signi"cantly the
identi"ed results.

The time histories and the PSDs of the calculated and true forces for cases of (1/4v, 1/2v)
and (1/4m, 1/4v) are shown in Figure 1. The time histories closely match each other except
at the start and end of the time duration. It is found that the variation in the identi"ed forces
increases with decrease in B. An inspection of the PSDs of the force reveals that good
matching between the forces is found around the exciting frequencies but with large noise in
the upper frequency range. The random noise in the polluted responses is re#ected in the
upper frequency range of the identi"ed forces with little adverse e!ect on the results in the
lower frequency range. The use of bending moments seems to cause poorer performances
compared with the velocities.

The reconstructed bending moment and velocity at 1/4 span are compared with the
measured ones in Figures 2 and 3. The time histories match closely with the true ones. The
PSDs of the responses indicate that errors exist in the upper frequency range which is again
suspected to be due to the simulated noise e!ect.

9.2. TWO-FORCES IDENTIFICATION

Bending moment and/or velocity responses at 1/4, 1/2 and 3/4 spans in 20 combinations
as shown in Table 2 are used to identify the two forces. The results are obtained in a manner
similar to the single-force identi"cation.

The errors between the calculated and the true forces are shown in Table 2 for di!erent
sensor combinations. The errors calculated by the time domain method (TDM) [18] are
also included in brackets for comparison. Note that the TDM uses acceleration
measurements instead of velocity measurements in the identi"cation. The proposed method
in general gives far smaller error than the time domain method. It is only in the case of using



Figure 1. Identi"ed single force and power spectrum from simulation: **, true; ) ) ) ) ) , 1/4v, 1/2v; } } }, 1/4m,
1/4v.

Figure 2. Comparison of velocity at 1/4 span: **, true; ) ) ) ) ) , 1/4v, 1/2v; } }}, 1/4m, 1/4v.
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Figure 3. Comparison of bending moment at 1/4 span: **, true; ) ) ) ) ) , 1/4v, 1/2v; } } }, 1/4m, 1/4v.

TABLE 2

Error in two-forces identi,cation (in per cent) (with 5% noise in response)

Sensor location and response type First force Second force Total force

1/4m, 1/2m 35)6s 37)4s 24)3
1/4v, 1/2v 47)5(222) 48)7(78)6) 33)5
1/2m, 1/2v 36)3s 38)4s 24)5
1/4m 1/4v 38)7s 40)6s 27)3
1/2m, 1/4v 36)4s 38)4s 24)1
1/4m, 1/2m, 3/4m 32)1s 33)1s 20)6
1/4v, 1/2v, 3/4v 38)9(10)7) 39)8(10)7) 27)5
1/4m, 1/2m, 1/4v 35)6s 37)4s 24)3
1/2m, 3/4m, 1/4v 33)5 34)1 21)5
1/2v, 3/4m, 3/4v 35)5 37)7 25)8
1/4m, 1/2m, 1/2v 35)6s 37)4(474) 24)3
1/4m, 1/4v, 1/2v 38)7(206) 40)6(156) 27)3
1/2m, 1/4v, 1/2v 36)3(193) 38)4(46)8) 24)5
1/2m, 1/4v, 3/4v 36)4 38)4 24)1
1/4m, 1/2m, 1/4v, 1/2v 35)6(201) 37)4(49)7) 24)0
1/4m, 1/2m, 1/2v, 3/4v 32)1 33)2 20)7
1/2m, 1/4v, 1/2v, 3/4v 36)4 38)4 24)1
1/4m, 1/2m, 3/4m, 1/4v, 1/2v 32)1 33)2 20)7
1/4m, 1/2m, 1/4v, 1/2v, 3/4v 35)6 37)3 24)0
1/4m, 1/2m, 3/4m, 1/4v, 1/2v, 3/4v 32)1 33)1 20)6

sIndicates error larger than 1000%.
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Figure 4. Identi"ed "rst force and power spectrum from simulation:**, true; ) ) ) ) ) , 1/4v, 1/2v, 3/4v; } } }, 1/4m,
1/2m, 3/4m.
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three acceleration measurements that the TDM gives better results than the present case
using three velocities. The results shown in Table 2 indicate that (1) many sensor
combinations would give similar errors in the identi"ed forces; (2) the use of more than two
sensors may not improve the result; and (3) both velocity and bending moment give
approximately the same accuracy in the identi"ed forces.

The time histories and PSDs of the identi"ed forces from using (1/4v, 1/2v, 3/4v) and
(1/4m, 1/2m, 3/4m) sensor combinations are shown in Figures 4}6. All the identi"ed forces
vary closely with the true force in the middle length of the time duration between 0)25 and
0)75 s. The results have a lot of variations due to the simulated noise e!ect. Other results not
shown here using di!erent sensor combinations also exhibit a similar pattern in the
identi"ed forces. Note that the discrepancies at the start and end of the time histories
contribute greatly to the overall error.

The above results show that accuracy in two-forces identi"cation is lower than that in
single-force identi"cation. This is due to a component in the simulated individual forces
with same amplitude and opposite phase. This results in large errors in the time histories.
The combined force shown in Figure 6 indicates that most of these errors are cancelled out
leading to a greatly improved time history and reduced error in the combined identi"ed
force as shown in Table 2.

10. EXPERIMENT AND RESULTS

The experimental set-up is shown diagrammatically in Figure 7. The main beam
3376 mm long with 100 mm]25 mm uniform cross-section is simply supported.



Figure 5. Identi"ed second force and power spectrum from simulation:**, true; ) ) ) ) ) , 1/4v, 1/2v, 3/4v; } } },
1/4m, 1/2m, 3/4m.

Figure 6. Identi"ed combined force and power spectrum from simulation:**, true; ) ) ) ) ) , 1/4v, 1/2v, 3/4v; } } },
1/4m, 1/2m, 3/4m.
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Figure 7. Diagramatic drawing of experimental set-up.
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A U-shaped aluminium section on the upper surface of the beams served as direction guide
for the car. An electric motor is used to pull a model car along the guide with a string wound
on the shaft of the motor. The rotating speed of the motor can be adjusted for di!erent
speeds. Seven photoelectric sensors are mounted on the beams to monitor the moving speed
of the car. The second sensor is located at the point where the front wheels of the car just get
on the main beam, and the last sensor is located at the point where the rear set of wheels just
get o! the main beam. They are used to measure the speed of the model car.. The others are
located on the main beam at a spacing of 0)776m to check on the uniformity of the speed.

Three strain guages and four accelerators are mounted at the bottom of the main beam to
measure the responses. One gauge and one accelerator are mounted at each of the
cross-sections at the 1/4, 1/2 and 3/4 spans. The fourth accelerator is mounted at the 3/8
span. An eight-channel dynamic testing and analysis system (DTAS) is used for data
collection in the experiment. The "rst channel is used to monitor the signal of the
photoelectric sensors. The second, third and fourth channels are used to measure the signal
of the strain gauges. The remaining channels are used to measure the acceleration responses.
The sampling frequency is 128 Hz.

The model car has two axles at a spacing of 0)203 m and in runs on four rubber wheels.
The mass of the whole car is 7)1 kg. The bouncing, pitching and rolling natural frequencies
of the car are 27)5, 42)9 and 69)4 Hz respectively. The "rst three natural frequencies of the
beam are 6)6, 18)5 and 39)5 Hz. The average speed of the car is 3)102 m/s in the present
study.

In this practical case when f
true

is not known, the seminorm of the solution against the
regularization parameter B is plotted. The seminorm of the estimated forces is

E1"Ef (identify)
j`1

!f (identify)
j

E, (31)

where f (identify)
j

, f (identify)
j`1

are the identi"ed forces with B
j
and B

j
#DB. The value of B which

corresponds to the smallest seminorm is the optimal value.
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10.1. EXPERIMENTAL PROCEDURES

Before the actual test on the experimental set-up, signals from the strain gauges were
inspected and the zero-shift components were identi"ed. The signals were then calibrated by
adding masses at the middle of the main beam. During the calibration, the signals of the
strain gauges were found to be not very stable and repeatability was not perfectly
satisfactory. It is noted that this will lead to calibration errors in the identi"ed results. The
car was placed at the right end of the leading beam, and the DTAS was set in pre-trigger
state at channel 1. Power for the motor was turned on, and the car moved on top of the
beams. Eight channels of signal were acquired. The uniformity of the speed was checked. If
the speed was stable, the above steps were repeated to check whether the properties of the
structure and measurement system were changed or not. If no signi"cant change was found,
the recorded data were accepted. The zero-shifts in the measured signals were removed, and
the signals were calibrated with measured channel sensitivities. The time histories between
two measured points of the responses were sub-divided into 10 sub-divisions such that the
time di!erence between two time steps is 7)8125 * 10~4 s. A smaller sampling time interval is
important for the accuracy of the iterative computation. The measured acceleration records
were integrated to velocity records with an algorithm developed by Petrovski and
Naumovski [26] with a low-pass "lter at 0)0625 Hz.

10.2. SINGLE-FORCE IDENTIFICATION

Nine combinations of the measured responses at 1/4 and 1/2 spans are used to identify
the forces as a single force. Correlation coe$cients between the reconstructed responses
Figure 8. Identi"ed single force and power spectrum from experiment:**, static force; } } } , 1/4m, 1/2m, ) ) ) ) ),
1/4v, 1/2v.



Figure 9. Comparison of velocity at 3/4 span in experiment:**, measured; } } } , 1/4 m, 1/2m; ) ) ) ) ), 1/4v, 1/2v.

Figure 10. Comparison of bending moment at 3/4 span in experiment:**, measured; } } } , 1/4 m, 1/2m; ) ) ) ) ),
1/4v, 1/2v.
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TABLE 3

Correlation coe.cients between measured and reconstructed responses 2 single-force
identi,cation

Combinations of the Comparing moment at Comparing velocity
responses 3/4 span at 3/4 span

1/2m 0)349 0)155
1/4m 0)801 0)600
1/4v 0)369 0)869
1/2v 0)200 0)254
1/2m, 1/4m 0)939 0)744
1/2v, 1/4v 0)364 0)946
1/4m, 1/2v 0)814 0)629
1/4m, 1/4v 0)796 0)594
1/2m, 1/4v 0)520 0)142

Figure 11. Identi"ed forces from sets of two responses from experiment: **, static force; } }} , 1/4m, 1/2m,
) ) ) ) ), 1/4v, 1/2v.
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Figure 12. Identi"ed forces from sets of three responses from experiment:**, static force; } } } , 1/4m, 1/2m,
3/4m; ) ) ) ) ), 1/4v, 1/2v, 3/4v.
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using the identi"ed forces and measured responses at 3/4 span are calculated to evaluate the
accuracy of the identi"ed force. Clearly, a larger coe$cient means that the identi"ed forces
are more accurate than that with a smaller coe$cient, but the larger coe$cient
does not mean the identi"ed force is accurate enough because this indirect method of
checking on the identi"ed results is not fully su$cient. The coe$cients are shown
in Table 3, and some of the identi"ed results are shown in Figures 8}10. It is not
possible to identify the static component of the forces using only velocity measurements,
and the static forces are added to the identi"ed forces in the "gures for convenience of
comparison.

The results in Table 3 show that the use of bending moments both at 1/2 span and at 1/4
span is most suitable for single moving force identi"cation. Figures 9 and 10 show that the
PSDs of the responses match closely, although the time histories are not very close to each
other. It is suspected that the calibration errors lead to these di!erences in the time histories.



Figure 13. Comparison of velocity at 3/8 span using two responses in experiment:**, measured; } } } , 1/4m,
1/2m, ) ) ) ) ), 1/4v, 1/2v.
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10.3. TWO-FORCES IDENTIFICATION

Twelve combinations of the measured responses are used to identify the two forces
separately. The velocity of the main beam at the 3/8 span is reconstructed using the
identi"ed forces, and it is compared with the measured response.

Some of the identi"ed results are shown in Figures 11}14. The component with the same
amplitude and opposite phase in the two identi"ed forces in Figures 11 and 12 is due to the
pitching motion of the model car. The two identi"ed forces are added to obtain a resultant
force as shown in the "gures. This resulting force can be used as a good estimate of the total
equivalent static load of the vehicle.

Figures 13 and 14 show that those curves obtained from using velocity responses closely
match the measured responses, while those obtained from using bending moment responses
have a large di!erence in the amplitude. This again leads to the suspicion of the existence of
calibration error in the strain measurements.

Correlation coe$cients are calculated between the reconstructed and measured
responses and they are shown in Table 4. They show that (1) velocity response alone gives
better results for the two-forces identi"cation; and (2) 1/4 span responses are better than the
other responses. Comparison of the correlation coe$cients in Tables 3 and 4 and
comparing the responses in Figures 9}12 show that results from the identi"cation as two
moving forces are more accurate than those from the identi"cation as a single force.

11. DISCUSSIONS

The ill-conditioned identi"ed forces have large #uctuations in their time histories. Their
magnitude are, however, bounded with the use of non-linear least-squares minimization as



Figure 14. Comparison of velocity at 3/8 span using three responses in experiment:**, measured; } } } , 1/4m,
1/2m, 3/4; ) ) ) ) ), 1/4v, 1/2v, 3/4v.

TABLE 4

Correlation coe.cients between measured and reconstructed
velocity at 3/8 span 2 two-forces identi,cation

Response combinations Correlation
location and type coe$cient

1/2m, 1/4m 0)742
1/2m, 1/4m, 3/4m 0)748
1/2v, 1/4v 0)989
1/2v, 1/4v, 3/4v 0)988
1/2m, 1/2v 0)018
1/2m, 1/4m, 1/2v 0)743
1/2m, 1/4m, 1/2v, 1/4v 0)744
1/4m, 1/4v 0)739
1/4m, 1/4v, 1/2v 0)747
1/2m, 1/4v 0)236
1/2m, 1/4v, 1/4m 0)743
1/4v, 1/2v, 1/2m 0)245
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shown in equation (14), and the errors computed for the identi"ed forces are much smaller
than those obtained from TDM [18] without regularization. However, the short periods at
the start and end of the time histories still contribute greatly to the total error as computed
from equation (30). This error can be reduced as reported by Choi and Chang [27] by using
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di!erent smaller B matrix at these two time durations. The forces identi"ed from the
experimental data are fairly smooth varying around the static force, and the identi"ed
combined force can be useful as a reliable estimate of the static weight of the vehicle crossing
the bridge.

12. CONCLUSIONS

A method based on dynamic programming is developed to identify moving forces from
measured responses of a simply supported beam. This method provides bounds to the
identi"ed forces in solving the ill-conditioned problem, and the errors of identi"cation are
much smaller than those obtained from the existing time domain method in comparing the
identi"ed forces from using di!erent combinations of measured responses in both
simulation and laboratory studies. The state-space formulation of the dynamic system can
be extended to include a more complicated "nite element model of a structure under
multi-forces excitation.
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APPENDIX A: NOMENCLATURE

g
n
(X) solution corresponds to the nth stage of dynamic programming

l length of "nite beam element
u
1
, u

2
"nite element end translations

f
j

vector of force in the jth stage of forward process
u vector of all displacements
u5 "rst derivative of u with respect to time
A, B weighting matrices
C system damping matrix
E least-squares error of the solution
F exponential matrix
G system matrix
K system sti!ness matrix
M system mass matrix
R

i
, M

i
the ith nodal vertical force and moment

P global nodal force vector
Q selection matrix
R

n
, S

n
initial conditions in the backward process of dynamic programming

X vector of state variable of displacement and velocity
Y matrix of information on force location
Z measurement vector
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